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Efficient numerical algorithm for multiphase field simulations
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Phase-field models have emerged as a successful class of models in a wide variety of applications in
computational materials science. Multiphase field theories, as a subclass of phase-field theories, have been
especially useful for studying nucleation and growth in polycrystalline materials. In theory, an infinite number
of phase-field variables are required to represent grain orientations in a rotationally invariant free energy.
However, limitations on available computational time and memory have restricted the number of phase-field
variables used in the simulations. We present an approach by which the time and memory requirements are
drastically reduced relative to standard algorithms. The proposed algorithm allows us the use of an unlimited
number of phase-field variables to perform simulations without the associated burden on computational time or
memory. We present the algorithm in the context of coalescence free grain growth.
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I. INTRODUCTION

Prediction of nucleation, grain growth, and concomitant
microstructure in polycrystalline materials is of great techno-
logical importance. It is well known that grain size, shape,
and topology significantly affect the mechanical properties.
Much experimental, theoretical, and numerical effort has
been focused on this problem. Computational methods are
particularly exciting since they allow us to isolate and study
the dominant controlling effects on the microstructural evo-
lution. An easily understood computational approach would
be to explicitly track all the grain boundaries and apply spe-
cific constitutive relations for their motion. Clearly, in prob-
lems involving complex microstructures, tracking each indi-
vidual grain boundary is unfeasible. An alternative approach
is the phase-field theory, first developed in the context of
solidification, in which interfaces evolve naturally at each
step of a numerical simulation. The latter can be achieved by
the introduction of a single or many phase-field variables,
whose diffuse values will differentiate the bulk from interfa-
cial regions. Different groups have extended this class of
diffuse interface models into a variety of applications with
quite different spirits (see the recent reviews: [ 1-3], and ref-
erences therein).

In the context of grain growth in polycrystalline materials,
the phase-field theory comprises of several nonconserved or-
der parameters ,(x,t),7(x,1), ..., mp(x,7) each of which
notionally represents the volume fraction of grains of a par-
ticular orientation. Inside each grain, a single-order param-
eter representing the particular orientation, will remain non-
zero (usually taking values +1) whereas all other order
parameters will assume values close to zero. Across inter-
faces between two grains, order parameters corresponding to
both orientations will take nonzero values, varying smoothly
from one grain into the other, reflecting the diffuse nature of
these interfaces. The evolution of these order parameters is
assumed to follow standard relaxational dynamics governed
by the Allen-Cahn (for nonconserved) or Cahn-Hilliard (for
conserved) —type equations.
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Several phase-field models have been proposed to simu-
late the grain growth kinetics of polycrystalline materials. To
the best of our knowledge, one of the first successful models
in which the grains of different crystallographic orientations
are represented by a set of nonconserved order parameter
fields is that of Chen and Yang [4]. This model has been
extensively applied by Chen and co-workers for two-
dimensional (2D) [5,6] and 3D systems [7]. Another class of
multiphase field models was proposed by Steinbach et al.
[8], with a constraint on the order parameters, X;7,=1, i.e.,
the sum of all order parameters at a given point is unity. The
physical interpretation of this constraint is that the order pa-
rameters represent the volume fraction of grains of different
orientations. Warren and co-workers [9,10] have proposed a
two-order parameter model, in which the crystalline order
and predominant local orientation of the crystal are repre-
sented. Nevertheless, it appears that multiorder parameter
models are more popular at this point. The effect of grain
boundary energy and mobility anisotropy on grain growth
has been studied [11,12] by extending the multiorder param-
eter model of Chen and Yang [4].

In the literature a variety of numerical approaches have
been developed [6,13,14,16,15] to solve the governing evo-
lution equations for the phase-field variables. One simple
approach is to use a second-order finite-difference method on
a uniform spatial grid with explicit time marching. To cir-
cumvent the stability restrictions posed by such schemes, fast
Fourier transforms have also been widely applied [13,14].
These spectral methods are valid on uniform grids with pe-
riodic boundary conditions. Such restrictions can be over-
come by using spatially adaptive grid designs and a finite
element method [15,16]. All the existing algorithms employ
only a small number of order parameters, since using more
field variables readily translates into high computational time
and memory costs.

There are two immediate drawbacks to using a limited
number of order parameters. Since each order parameter rep-
resents a particular grain orientation, intermediate values of
orientations are excluded. This may be viewed as restricting
the allowed grain orientations to a finite discrete set of angles
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(with loss of rotational invariance of the free energy) or each
order parameter as representing a range of orientations. In
the context of solidification of a polycrystalline material, this
prevents the potential nucleation of a new randomly oriented
grain. Obviously, a larger number of order parameters is re-
quired for a more continuous description of the frequency
distribution of grains of different orientations. Furthermore,
another unfortunate consequence of limiting the number of
order parameters is the coalesence of grains during grain
growth. Coalesence is the situation in which two grains
which have the same order parameters come into contact and
instantaneously form a single large grain. This leads to in-
correct growth rates and unphysical grain shapes. The likeli-
hood of coalescence involving a given grain varies with the
probability p(Q) that at least one of its second-nearest-
neighboring grains shares the same orientation and is given

by [17]
1 Z
p(Q)zl—(l—é), (1)

where Z represents the average number of second-nearest-
neighbor grains in the microstructure. In the limit of large Q,
p(Q) is approximately equal to Z/Q. In 2D simulations, an
average grain has about 6 sides and hence, there will be 12
nearest-neighbor grains [18]. With 9=48, the probability of
grain coalesence is about p(48)=0.223. Approximately 110
order parameters are needed to effectively suppress p(Q) to
below 10% [7]. The problem is even more acute in 3D with
each grain having about 14 sides on average (Z=28), result-
ing in a probability of coalesence of 0.36 [18]. Therefore,
more than 200 order parameters would have to be employed
at each grid point in order to keep p(Q) below 13% in 3D
[7]. There have been some attempts to avoid this effect when
using smaller Q values, via a dynamic reorientation algo-
rithm [7]. However, to our knowledge, there are no multio-
rder parameter models with the framework to handle an un-
limited number of phase-field variables.

In this paper, we propose an efficient new algorithm for
solving the Allen-Cahn equations of the multiorder param-
eter method. For a fixed number of order parameters, the
proposed method significantly reduces the CPU time and
memory requirements. Further, the new method does not en-
gender any additional computational expense associated
with increasing the number of order parameters used. We
apply this method to achieve microstructure devoid of coa-
lesence and quantify its role in overall growth rates of grains
in the standard algorithm. The key idea for the scheme stems
from the following observation, which is gainfully exploited.

In the standard approach, all order parameter values at
every grid point are stored and evolved at every iteration
step. However, at any given point away from the grain
boundaries, only one order parameter is active (has a nonzero
value). And near a grain boundary a small number of order
parameters corresponding to the adjacent grains are active.
Even at the junction of the boundaries between several adja-
cent grains, the number of active order parameters is small.
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Therefore, instead of evolving all the phase-field variables at
every grid point, we evolve only the active phase-field vari-
ables. This allows us to implicitly track the location of the
grain boundaries since points which have more than one ac-
tive order parameter may be considered to be on the grain
boundaries. The computational advantage arises from the
fact that fewer order parameters are stored at each point com-
pared to the standard method and fewer evolution equations
solved. An additional computational benefit arises from the
fact that the evolution equations are solved only on grain
boundaries which occupy a smaller fraction of the total area,
especially towards later times when grains become larger.

The successful implementation of this strategy along with
the computational advantages are explained in Sec. II. For
convenience, we refer to the modified algorithm as the active
parameter tracking (APT) algorithm. A comparison of accu-
racy and computational time for the standard algorithm and
the APT, and coalesence free grain growth simulations are
presented in Sec. III.

II. THEORY AND COMPUTATIONAL ALGORITHM

First, we briefly describe the phase-field theory of Chen
and co-workers (see [1,5,6], and references therein for more
details). Next, we describe the proposed APT algorithm and
its implementation.

A. Theory

Basic to phase-field theories are continuous field variables
mx,1), mx,0), -+, no(x,1) (referred to as order param-
eters) which are functions of material points x and time 7. In
the context of polycrystalline materials, the order parameters
represent the volume fraction of grains of a particular orien-
tation. The evolution of the order parameters is specified by
the time dependent Ginzburg-Landau equations for each of
the QO order parameters

an; oF

=-L—, i=12,...,0, 2
P oy 0 ()

where L; are mobility coefficients and F is the free energy
functional. The free energy functional is taken to be of the
form

0
Ki
’ 7]Q) + 2 E|V7]l|2 dV’ (3)

i=1

f:f f(’r]l”rh"“
%

in which «; are positive constants for an isotropic gradient
energy and f is a local free energy density.
Following Chen and Yang [4] we choose the specific form

0 o 0
f(pm, . mg) = > (— %C”Z‘z"' 4]'137]?) +y2 2 77?77/2'
i=1 i=1 j#i
(4)

such that the energy is independent of the orientation of the
grains. If the coefficients «, 3,y are chosen to be positive
constants with a=£ and y> /2, the energy then has 20
wells of equal depth at (7,7,...,70)=(x1,0,...,0),
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FIG. 1. Comparison of Fan and Chen’s [6] algorithm against the present effective phase-field simulation. (a) Basic algorithm [6]; (b)
present approach. Pixel by pixel comparison shows little difference between the results of the two methods.

0,%x1,...,0),...,(0,0,..
orientations of the grains.

Substituting (4) and (3) in the evolution equations (2), we
obtain the governing equations for grain growth

.,x=1) representing 2Q possible

0
am; .
Th_ L,-(— an+ B +2yn 2 ) - K,Vzm-), i
ot j#i

=1,2,....,0, (5)

which are a set of Q coupled, nonlinear, hyperbolic equa-
tions.

The governing equations (5) are solved using the finite
difference method. Assuming a uniform spacing A and de-
noting e; and e, as unit vectors in the x and y directions,
respectively, the spatial derivatives are calculated using a
two level discretization

1
V2i(x,) = A2

1 1
7,x + pAe;| + gAe,,1) - W(X,l)>
S ,
p| + 4|

p=q+0. (6)

p=—1g=-1

The time derivatives are discretized using a forward-Euler
difference

Imix,t)  m(x,t+ A1) — 7i(x,1)

=1,2,..., 7
ot At ¢ ™

to obtain an explicit finite difference scheme. It should be
pointed out that in explicit schemes, the stability of the
scheme is governed by the time step chosen. Despite this
drawback, we prefer this simple scheme to illustrate our pro-
posed strategy of implicit boundary tracking via active pa-
rameter tracking algorithm.

B. Active parameter tracking algorithm

As mentioned earlier, at every grid point only a few
phase-field variables are nonzero and contribute to the evo-
Iution of grains via boundary migration. At each point
O(x,1), the set of ordered pairs

Ple,t) ={(, 7): me.0)| > e} (8)

contains the list of active phase-field variables with magni-
tude greater than & (chosen to be a small positive threshold
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@  N=2000
30—/
\«f\"‘\
' "(
© N=17000
value).! In order to account for the possibility of a grain

entering or leaving a point from neighboring points, we con-
sider the active parameter list: Q(x,t) which is the union of
the sets P at the two levels of nearest neighbors

U P(x +pAe1 + quz,t). (9)
P.g=—1

Qx,1) =

The number of active parameters at a point is Q,(x,?)
=|Q(x,1)| where |S| denotes the cardinality of set S.

With this identification of the active phase-field variables
at a point, only Q,(x,#) governing equations (5) are required
to be solved

0,
on;
=L mam B+ 2y 2w = Vi,
it j=1
§j¢1

V(i,m) € Qx.1) (10)
and (§;, 7751,) € Qx,0),j=1,....0,°

'We use the notation S(x,?) to emphasize that the set S is to be
constructed for each point x and at each time step .
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FIG. 2. (Color online) Overlay
plot of microstructures at three
different time levels of the simu-
lation, N above refers to the num-
ber of integration steps: (a) 2000;
(b) and 7000; and (c) 17 000. For
the purpose of clarity, the micro-
structures from the present algo-
rithm are represented with thin
lines while those from the Fan and
Chen [6] algorithm are presented
with thick boundaries.

Specifically, the algorithm consists of the following steps
repeated for each iteration (for each grid point in the do-
main).

(1) The list of all active phase-field variables from the
first- and second-nearest neighbors Q is assembled from
stored values of P.

(2) Q, governing equations (10) are solved for all (i, 7,)
€ Q. The Laplacian term is evaluated from neighboring ac-
tive parameter sets P(x+pAe,+gle,,1),p,q=—1,0,1.

(3) A new set P(x,+A1) is assembled from order param-

eters satisfying |7;(x,t+Af)|>¢ obtained from (2) and
stored.
In more generic terms the steps (1) and (3) are akin to the
mesh refinement and/or derefinement strategy often used by
computational physicists in a variety of other settings
(shocks, vortex structures, etc). However, in the present con-
text they serve the purpose of implicitly tracking the grain
boundaries using minimal data storage. As the grain bound-
ary moves away from a given lattice point, the phase-field
variable representing that grain is automatically not tracked
any more, since it is no longer part of the active set of any of
the neighbors.

We find that there is usually only one effective grain ori-
entation the grid points away from grain boundaries, while
two or more variables are likely at the interface between
adjoining grains. As can be imagined, at initial times of the
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simulation when triple or higher junctions are possible for
small grains, a larger number of active order parameters exist
at several points. With increasing grain size, there remain
smaller numbers of active order parameters at each point. We
found that the number of effective grain orientations never
crossed 10 in our 2D simulations. It can be easily seen that
increasing Q has no effect on the CPU time or memory re-
quirements since the number of active order parameters at
each point remains unchanged. This provides significant sav-
ings in CPU time and memory. Furthermore, when the num-
ber of active order parameters is one at each grid point and
for all its neighbors (which is fairly typical inside a grain), a
simple test condition allows us to determine if a given grid
point is interior to a grain or not. If the grid point is com-
pletely interior to a grain, we do not solve the corresponding
evolution equation for the order parameter at that point. At
later times in the simulations when the grain boundary area
is a small fraction relative to the overall domain, an addi-
tional computational savings is thus obtained.

We end our description of the APT algorithm with a re-
mark on the development of the initial microstrucure from a
liquid state. Chen and co-workers start with 7,
=1,2,...,0 taking small random values at each grid point.
We perform simulations using two methods: In the first ap-
proach, we perform simulations using the standard algorithm
for a few hundred time steps using as large a Q as computa-
tionally feasible until grains form. Then we reassign unique
order parameters to all the grains and switch to the APT
algorithm. Alternatively, we start by assigning small random
values to a single unique order parameter in small overlap-
ping domains, with the aim of simulating coalesence free
grain growth from the initial time 7=0.

III. RESULTS AND DISCUSSION

In this section we examine four different aspects of the
APT algorithm in relation to the standard algorithm: (i) ac-
curacy, (ii) robustness, (iii) savings in CPU time and memory
requirements, and (iv) effect of coalescence on grain growth.

To begin with, the standard algorithm is implemented fol-
lowing Fan and Chen [6] and these results are used for
benchmarking the simulations of the APT algorithm. For the
ease of simulation, we use the same parameter values pro-
vided by Fan and Chen [6]

k=20, L;=10, a=B=vy=1, i=12,...,0

(11)

The spatial and time steps are chosen to be, respectively, A
=2.0,Ar=0.25. Periodic boundary conditions are applied in
both the x— and y— directions. We choose an active param-
eter threshold e=107°.

The following simulations are performed.

(1) Simulation using the standard algorithm of Fan and
Chen [6] with Q=48 phase-field variables over the entire
simulation time.

(2) Simulation using the standard algorithm up to N
=1000 time steps, and continuing the simulation using the
APT algorithm for subsequent time steps.
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FIG. 3. CPU time against the number of integration steps of the
algorithm. Note that the Q=02 from subcooled liquid simulation is
equivalent to running the Fan and Chen algorithm with Q
~125 000 phase-field variables. Yet, the time taken per iteration step
is unchanged with respect to the Q=48 simulation.

(3) Simulation using the standard algorithm up to N
=1000 time steps and reassigning unique order parameters to
all the grains before continuing simulations using the APT
algorithm.

(4) Simulation from an initial subcooled liquid state us-
ing small random values for unique order parameters in
small overlapping subdomains and the APT algorithm.

From an initial subcooled liquid state (simulated by the
random initial conditions), until the initial grain formation,
the growth kinetics is governed by the basic algorithm. We
use simulation (2) to verify the accuracy and robustness of
our strategy compared with the basic algorithm results from
simulation (1). Simulation (3) is used to study the role played
by coalescence. We use simulation (4) to achieve the growth
kinetics completely untainted by coalescence.

To visualize the microstructural evolution using the
phase-field variables, we define the function

[Pl

Yl =2 e (x.0, (&) € P, (12)
i=1

which takes values of 1.0 within the grain and a significantly
smaller positive values across the grain boundaries. Contours
of ¢(x,r) are shown in Fig. 1, using simulations (1) and (2),
after 2000 and 7000 simulation time steps. The growth ki-
netics is exactly the same and the pixellated differences be-
tween the two visuals are fairly trivial. The smallest grains,
where the most number of order parameters may be expected
to be active compare very well in the two simulations. The
results appear to vindicate our strategy of implicitly evolving
the phase boundaries, as against all the variables within the
domain in so far as the accuracy is concerned.
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The computational time taken for the basic algorithm and
APT algorithm versus the number of time steps is shown in
Fig. 3. The savings in computational time can clearly be seen
to be very significant. While the computational time required
for the standard algorithm increases linearly with the number
of iterations as expected, the time required for the APT al-
gorithm is slightly nonlinear. This is because the new method
allows us to implicitly track the grain boundaries and per-
form evolution calculations only on grain boundaries. At
later times, the grain boundaries occupy a smaller fraction of
the overall area, leading to a fewer number of computations.
Noting that the maximum number of the active order param-
eter Q, at any point does not exceed 10, the computational
memory requirements for the APT algorithm is equivalent to
a standard algorithm simulation with Q=10. With dynamic
memory allocation (which we have not implemented), the
memory requirements at later simulation times can poten-
tially be much smaller.

Next we focus our attention on simulation (3) which aims
to achieve coalescence free simulations starting from N
=1000 time steps. Each grain at 1000 steps is reassigned to a
unique grain orientation (order parameter) and the simula-
tions are continued thereafter. These results are compared to
the simulations using basic algorithm [simulation (1)].
Figure 2 illustrates the role played by coalescence. The
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FIG. 4. Temporal evolution of
coalescence free grain growth us-
ing unique grain orientation at
each lattice point N=(a) 1000, (b)
2000, (c) 7000, and (d) 17 000.

microstructure obtained from the present algorithm is over-
layed with thin lines, while thick lines are used to distinguish
the grains obtained using the basic algorithm. Around the
central regions and in several other locations, we can visual-
ize the grains affected by coalescence. Apparently there is no
coalescence between N=1000 and N=2000, which is re-
flected in Fig. 2(a)) with a perfect match. However, when
grains of different orientations existing between grains of
like orientations are annihilated, it leads to an unphysical
grain growth as depicted in Figs. 2(b) and 2(c) for N=7000
and N=17000, respectively.

In simulation (3), we have used the standard algorithm up
to N=1000 time steps and continued using the unique order
parameter reassignment and the APT algorithm for subse-
quent simulations. Using the basic algorithm from the N=0
has at least two limitations: (i) startup memory requirement
is as large as the basic algorithm (approximately 32X S X S
X O bytes assuming 16 byte double precision at two time
levels, S being the grid size and Q the total number of phase-
field variables). (ii) Between N=0 to N=1000, the small ini-
tial grains after nucleation will undergo significant coalesc-
ing (see Fig. 3). To circumvent these limitations, we have
designed a scheme in which each lattice point is assigned a
unique grain orientation, and the phase-field equations are
solved. In the initial stages, every grid point has nine distinct
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grain orientations for the possible evolution. The phase-field
values above a certain threshold |7,>107° are carried over
to the subsequent iterations. Thus using a Q value with as
many as the number of grid points in the systems, a com-
pletely coalescence free growth is presented in Fig. 4. The
growth rates of mean grain size is presented in Fig. 5. The
mean grain size (D) is obtained by dividing the total domain
area to an equivalent number of circular grains. The mean
grain size (D) in the three simulations are matched at N
=1000 for a clear comparison of the growth rates for Q
=48,96 and Q=00.2. For the latter, two grid sizes were used
to check for the consistency of the present simulations. The
role played by the coalescence even for Q=96 is quite sig-
nificant, which is completely avoided using the present
scheme.

IV. CONCLUSIONS

In this paper, we describe a computationally efficient APT
algorithm for multiorder parameter phase-field theories. In
the proposed method we track the active order parameters at
each grid point. Only the active order parameters are in-
volved in the evolution equations and this provides an im-
plicit means of tracking the grain boundaries in the phase-
field method. This approach reduces computational effort for
simulations involving a large number of order parameters
and poses no additional computational burden in increasing
the number of order parameters used without bound. We
studied this approach in the context of polycrystalline grain
growth. We have found that coalescence plays a role in the
overall grain growth rates and we have compared these simu-
lations in a coalescence free setting.

Several wide ranging applications exist in which a large
number of grain orientations play an important role: for ex-

We use Q= as shorthand to denote unique order parameters for
each grain in the simulation. For example, in simulation (3), reas-
signing unique order parameters for each grain at N=1000 trans-
lates to running the simulation with Q=1180 order parameters. In
simulation (4), unique order parameters in small subdomains from
N=0 translates to running the simulation with Q=25 000 order
parameters.
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FIG. 5. Temporal evolution of average grain size for different Q
values. The higher growth rates for Q=24, 48, and 96 may be
attributed to coalescence. The Q= simulation is run by seeding
random values for unique phase-field variables in small overlapping
domains.

ample, soap froth evolution, solidification of liquid into a
polycrystalline solid, martensitic phase transformations in
polycrystalline materials, polycrystalline ferroelectric trans-
formations, etc. We believe that this method of implicitly
tracking active order parameters at each point with a minimal
additional computational burden will allow several more ap-
plications in computational physics to be accessible to solu-
tion using the phase field method.
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